LUZIN AND SIERPIŃSKI SETS MEET TREES Marcin Michalski, marcin.k.michalski@pwr.edu.pl

A tree T on ω is called

- Sacks tree or perfect tree, denoted by $T \in S$, if for each node $s \in T$ there is $t \in T$ such that $s \subseteq t$ and $|succ(t)| \ge 2$;
- Miller tree or superperfect tree, denoted by $T \in \mathbb{M}$, if for each node $s \in T$ exists $t \in T$ such that $s \subseteq t$ and $|succ(t)| = \aleph_0$;
- Laver tree, denoted by $T \in \mathbb{L}$, if for each node $t \supseteq stem(T)$ we have $|succ(t)| = \aleph_0$;
- complete Laver tree, denoted by $T \in \mathbb{CL}$, if T is Laver and $stem(T) = \emptyset$;

Let \mathbb{T} be a family of trees. Then we define a *tree ideal* t_0 as follows:

Definition 1. Let $X \subseteq \omega^{\omega}$. Then

$$X \in t_0 \Leftrightarrow (\forall T \in \mathbb{T}) (\exists T' \subseteq T, T' \in \mathbb{T}) (T' \cap X = \emptyset).$$

For example s_0 is the classic Marczewski ideal. Let us recall a notion of \mathcal{I} -Luzin sets.

Definition 2. Let X be a Polish space and \mathcal{I} be an ideal. Then we call a set $L \subseteq X$ an \mathcal{I} -Luzin set if $|L \cap A| < |L|$ for all $A \in \mathcal{I}$.

For classic ideals of Lebesgue measure zero sets \mathcal{N} and meager sets \mathcal{M} we will call \mathcal{M} -Luzin sets generalized Luzin sets and \mathcal{N} -Luzin sets generalized Sierpiński sets.

We will consider \mathcal{I} -Luzin sets in a context of algebraic properties and tree ideals. We will work on the real line \mathbb{R} with addition. Since \mathbb{R} is σ -compact, it does not contain even bodies of Miller trees. We will tweak the definition a bit by saying that $A \subseteq \mathbb{R}$ belongs to t_0 if $h^{-1}[A]$ belongs to t_0 in ω^{ω} , where h is a homeomorphism between ω^{ω} and a subspace of irrational numbers (see [1] for a similar modification in the case of 2^{ω}). Using a subtle kind of fusion for Miller and Laver trees we will prove that

Lemma 1. There exists a dense G_{δ} set G such that for each Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree $T' \subseteq T$ such that $G + [T'] \in \mathcal{N}$.

We will use this result to obtain the following theorem that extends the result achieved in [3].

Theorem 1. Let \mathfrak{c} be a regular cardinal and $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Results are available in [2].

References

- [1] Kysiak M., Weiss T., Small subsets of the reals and tree forcing notions, Proceedings of American Mathematical Society, vol. 132, nr 1, pp. 251-259, 2003.
- [2] Michalski M., Rałowski R., Żeberski Sz., Nonmeasurable sets and union with respect to tree ideals, arXiv:1712.05212 (2017)
- [3] Michalski M., Żeberski Sz., Some properties of I-Luzin, Topology and its Applications, 189 (2015), pp. 122-135,